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Presentation Overview 

Genomic (Genome-Wide) Selection 

• Characterizing GxE using marker effects 

• Integration in a breeding program 

• Biparental and Multi-Family predictions 

• Recurrent Genomic Selection 



Molecular Breeding Goals 

• Allele discovery 

• Allele characterization & validation 

• Parental & progeny selection for superior alleles at multiple 

loci to generate transgressive segregation 

Increase response (R) from selection 

1) More accurate selection (rA) 

2) Larger selection differential (S)  

• Increase selection intensity by reducing costs 

3) Shorter selection cycle time (t) 
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GS in a Plant Breeding Program 
Heffner, Sorrells & Jannink. Crop Science 49:1-12 

 Genomic selection reduces cycle time & cost by reducing frequency of phenotyping 

Training Population Breeding Population 



Factors Affecting the Accuracy of GEBVs 

• Level and distribution of LD between markers and QTL 

• Meuwissen 2009: Minimum number of markers for across family= Ne*L where Ne is the 

effective population size and L is the genome size in Morgans  E.g. Wheat: 50x30=1500 

• Marker number must scale with effective population size.  

• Size of training population 

• Larger is better and over time re-training models will be required 

• Meuwissen 2009: Minimum number of records for across family prediction  = 2*Ne*L   E.g. 

Wheat: 2X50x30=3000 

• Heritability of the trait 

• More records are required for low heritability traits 

• Distribution of QTL effects 

• Many small effect QTL or low LD favor BLUP for capturing small effect QTL that may not 

be in LD with a marker  

• Prediction based on relationship decays faster than prediction based on LD. 



Choosing a Statistical Model for GS 

Problem: Must estimate many QTL effects from a limited number of phenotypes or 

records (large ‘p’ small ‘n’ problem) 

 

Previous Approach: Least Squares regression for variable selection  

• Markers are fixed effects and  an arbitrary threshold for significance is 

used to fit the markers  

• Results  in  overestimation of significant effects and loss of small effects 

• Options: Variable selection or shrinkage estimation can be used to deal 

with oversaturated regression models 

 

Current methods: Linear mixed models, Bayesian estimation, Machine Learning 

• No Testing for significance 

• Many QTL effects, set as random effects, can be estimated simultaneously 



Choosing a Statistical Model for GS 

 

Accuracy (r) = Pearson’s correlation 

coefficient using: 

• Breeding values based on phenotype 

• Breeding values estimated based on GS 

prediction models 

 

r is analogous to the square root of the 

narrow sense heritability 

 

Model performance is based on correlation between GEBV and True 

Breeding Value (TBV) 



Optimizing Prediction using Marker Effects 

Nicolas Heslot 

• Limagrain Europe Barley  

• 996 F6 &F7 lines   

• 58 environments 

• 13,682 plots 

• Unbalanced – only 18 genotypes present in >50% of 

the environments 

• Bayesian LASSO GS model 

• Characterize allele-effect estimates for each test location 

• Identify outlier environments 

• Group relevant mega-environments 



Outlier environments were identified but there was no appreciable gain in accuracy. 

Use of Marker Effects to Cluster Environments 

Dissimilar 

Similar 

Marker effects for all lines in each environment formed a balanced dataset for computing Euclidean distances 

4 clear 
subgroups but 
not related to 
region or year 



Train GS model in each 
environment 

Compute mean accuracy of each 
training environment for predicting 

line performance in the other 
environments, rank them 

Remove environment one at a time 
starting from the least predictive 

Train and cross validate a GS 
model on the remaining training 

population: Predictive set 

Predict the removed data with the 
GS model: Unpredictive set 

Use both accuracy 
measurements to decide the 

cut-off point 

Uses the predictive ability of an 

environment to optimize the composition 

of the training population derived from 

the complete dataset  

Optimizing the Composition of the 
Training Population 

(Heslot et al TAG in review) 
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Number of Environments Excluded from Training Population 

• Predictive set 
• Unpredictive set 
• Validation 

Remove least predictive 
environments one at a 
time, then cross validate 
 
Prediction accuracy rose 
from 0.54 to 0.61 and no 
change in heritability 
 
Some outlier environments 
were included in the 
optimal model 
 
Accuracy in the validation 
set increased from 0.279 to 
0.292 
 
Only 1 of the 996 barley 
lines were excluded in the 
optimal model training set 



Elliot Heffner 

• Genomic Selection in Biparental Populations: Heffner et al. 2011. Crop 
Science 51: doi: 10.2135 

• Genomic Selection Across Multiple Families in the Breeding Program: 
Heffner et al. 2011. The Plant Genome 4: 65 

Jessica Rutkoski 

• Genomic Selection for Adult Plant Stem Rust Resistance 

• Genomic Selection for Fusarium Head Blight Resistance 

• Recurrent Genomic Selection 

 

Genomic Selection Experiments in the  

Cornell Wheat Breeding Program 



• Biparental Populations 

• Cayuga x Caledonia (Soft White Winter) 

• 209 DH lines; 399 DArT Markers  

• Preharvest Sprouting 16 environments (6 years) 

• 9 Milling and Baking Quality traits - 3 years, one location per year 

• Foster x KanQueen (Soft Red Winter) 

• 175 DH lines; 574 DArT Markers  

• 9 Milling and Baking Quality traits - 3 years, one location per year 

• Across Multiple Families - Master Nursery 

• 400 advanced breeding lines (F7+)  

• Augmented field design  

• Three locations over 3 years, 2007-2009 

• DArT markers ~ 1500 polymorphisms 

• 13 agronomic traits 

Genomic Selection Experiments in the  

Cornell Wheat Breeding Program 
Elliot Heffner 



Evaluation Methods for GS in Biparental Populations 

• Prediction Models  

• MLR: Multiple Linear Regression - Forward/Backward p<0.2 

• RR: Ridge Regression BLUP - equal variance, all markers 

• BayesCpi: Equal variance, optimized pi for non-zero markers 

• Phenotypic Prediction Accuracy  

• Based on the Correlation of Phenotypes from TP year with the VP 
Phenotypes in the Validation Years 

• Cross Validation 

• Model Training based on one year, validation on remaining (different) years 

• Lines in Validation Population (VP) are not included in the Training 
Population (TP) 

• Training Population Sizes = 24, 48, 96 

• Marker Number = 64, 128, 256, 384, 399, 574 
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Biparental Populations 

GS accuracy 47% > MLR 



Biparental vs. Multi-Family GS 

Multi-Family 

1) Allows prediction across a broader 
range of adapted germplasm 

2) Allows sampling of more 
environments 

3) Cycle duration is reduced because 
retraining model is on-going 

4) Allows larger training populations 

5) Greater genetic diversity 

Biparental 

1) Population specific 

2) Reduced epistasis 

3) Reduced number of markers 
required 

4) Smaller training populations 
required 

5) Balanced allele frequencies 

6) Best for introgression of exotic 
germplasm 



• Two conventional MAS models 

– With or without the Kinship Matrix as a covariate 

– Two- stage analysis 

• Association analysis - test for significant loci  

• Multiple linear regression – estimate effects of significant markers 

• Four GS models 

Model     Marker 
     effects   

All markers have 
a non-zero 
effect 

Markers have 
equal 
variances 

Association w/o K  Fixed NA 

Association w/ K   Fixed NA 

Ridge Regression  Random ✔ ✔ 

BayesA   Random ✔ 

BayesB   Random 

BayesCπ  Random ✔ 

Multi-Family GS Models 



Results 
• MAS model accuracy  

– Model w/o Kinship (0.48) was similar to 

model with Kinship (0.44) 

• Small range in GS model accuracy 

– 0.60 (BA); 0.59 (RR and BB); 0.58 (BC) 

• rGS was 25% greater than rMAS 

• rPS 33% greater than rMAS  

• rPS 7% greater than rGS 

 

 

 

 

Method Low High Mean 
MarkerSel/
PhenoSel 

MAS 
(AA)  

0.19 0.65 0.48 0.75 

GS (BA) 0.22 0.76 0.60 0.95 

Pheno 0.21 0.89 0.64 ------- 
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Advanced Regional Testing 
 

F3 Field Advance Bulk or row-Pheno, MAS 

Cornell Wheat Breeding Program 

GEBV + Phenotype 

Training Population  
F4:5, Master N., phenotype, select 

uniform spikes, genotype 
1 or 3 Locations, GS+PS 

GH 

Crossing & 

Selfing 

Cycle 
S0 Self 
Winter 
Crossing 

Spring 
Plant &  
Harvest 

Fall 
Plant & 
Harvest 

Summer 
Crossing 
S0 Self 

Recurrent Selection Stage 

 F2 GH/Field Advance SSD/bulk, MAS Inbreeding 

Seed 
Increase 

Planting GS-selected individuals (S0), intermating, self-pollination and S1 harvesting seed occur twice a year  
F2s can be field or GH planted depending on space available.  MAS &/or GS can be applied 
F3s will begin seed increases of selected individuals in single rows 
F4s will be phenotyped and 50 F5 spikes selected for uniformity and for GBS genotyping 
Selected lines enter the Master Training Nursery 
Each year selected lines are entered in the regional trials 

Evaluation Stage 

F4 Field Advance Bulk or plot-Pheno, MAS 

GS Models emphasizing additive genetic variation  

GS Models capturing non-additive genetic variation  



 

Genomic selection for quantitative 
disease resistance in wheat 

 
Jessica Rutkoski 

Stem rust of wheat, Puccinia 
graminis f.sp. tritici  

Fusarium head blight 
of wheat Fusarium 
spp. 



 

• Cooperative Nursery Data – 3 years, 3 nurseries, 60 

environments 

• Traits: Incidence (Inc), Severity (Sev), Fusarium damaged 

kernels (FDK), Incidence/Severity/Kernel quality index (ISK), 

Deoxynevalenol (DON), Heading Date (HD) 

J. Miller 

M. McMullen 

M. McMullen 

• GS Models: Ridge Regression, Bayesian LASSO, Reproducing 

Kernel Hilbert Spaces, Random Forest, Association mapping 

with a Q+K matrix+multiple linear regression with markers as 

fixed effects 

• Population Size: Training – 132, Predicted – 33 

• Cross validation: 5 fold, repeated 10 times 

 

Evaluation of GS Models for Fusarium Head 

Blight Resistance 
(Rutkoski et al The Plant Genome In press) 



Model Accuracies for Fusarium Head Blight Resistance 
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Prediction Method 

Comparison of Prediction Accuracies for DON 
 (Rutkoski et al The Plant Genome In press) 

Correlated traits:  Incidence (INC), fusarium damaged kernels (FDK), severity 
(SEV), and the index (ISK) 
Most accurate GS model: Random forest (RF) 
RF prediction model combining markers and correlated traits 

DArT markers=2,400 
QTL=SSR markers=8 
(30) linked to 5 QTL 



Durable Rust Resistance in Wheat 

Funded by the Bill & Melinda Gates Foundation 

Since the 1999 discovery of virulence on Sr31 in Uganda, Ug99 races have 

overcome Sr36 and Sr24 and spread north to Iran and south to South Africa 



VS.  

All-stage resistance- 
conferred by major R- 
genes that provide 
complete resistance 

Adult plant resistance- conferred by additive loci 
that alone do not provide complete resistance 
 

Stem Rust Resistance- Two Types: 



Recurrent Genomic Selection for  

Adult Plant Resistance to Stem Rust 
Jessica Rutkoski 



Summary: Genomic Selection 
 

• GS differs from MAS and Association Breeding in that the underlying 

genetic control and biological function is not known. 

• Breeders can implement GS without the upfront cost of obtaining that 

knowledge. 

• GS preserves the creative nature of phenotypic selection to sometimes 

arrive at solutions outside the engineer’s scope. 

• Most important advantages are reductions in the length of the selection 

cycle and associated phenotyping cost resulting in greater genetic gain 

per year. 
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